

Terms of Use for My Teaching Library Resources

The LICENSE TO USE...

You received this product as a FREE resource and your license to use does not expire but you must follow the below rules / terms of use...

You are ALLOWED to...

- Use this resource for your own personal, non-commercial use (but must follow the "License to Use" terms
- Save this file on your computer (as long as your license is valid only)
- Print as many copies as you need for your classroom, home setting, co-op but only for students you are personally teaching. (as long as your license is valid only)

You are NEVER ALLOWED to...

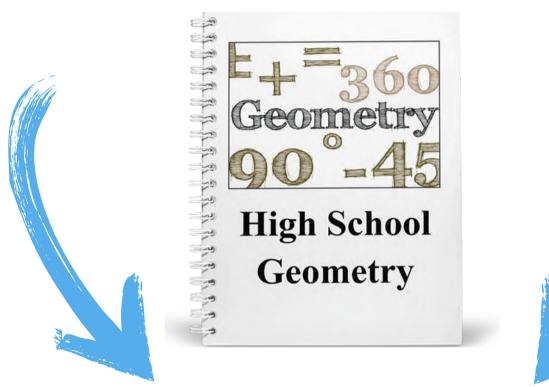
- Email this file and/or upload this file to share/or store on any location where others can download it (i.e. public computer, Amazon Inspire, DropBox, Facebook or other Social Media groups/pages, Good Drive, ect. (You get the picture.)
- Link directly to the PDF for any reason. You may not share the link in any way.
- Alter this file or claim as your own
- Sell or (in any way) profit from this file. It is illegal to print a copy and sell the copy.
- Give this file away for any reason

Thank you for respecting these terms of use.

Any violation is a violation of the DCMA - Digital Millennium Copyright Act.

Join us on...

only pay for membership!



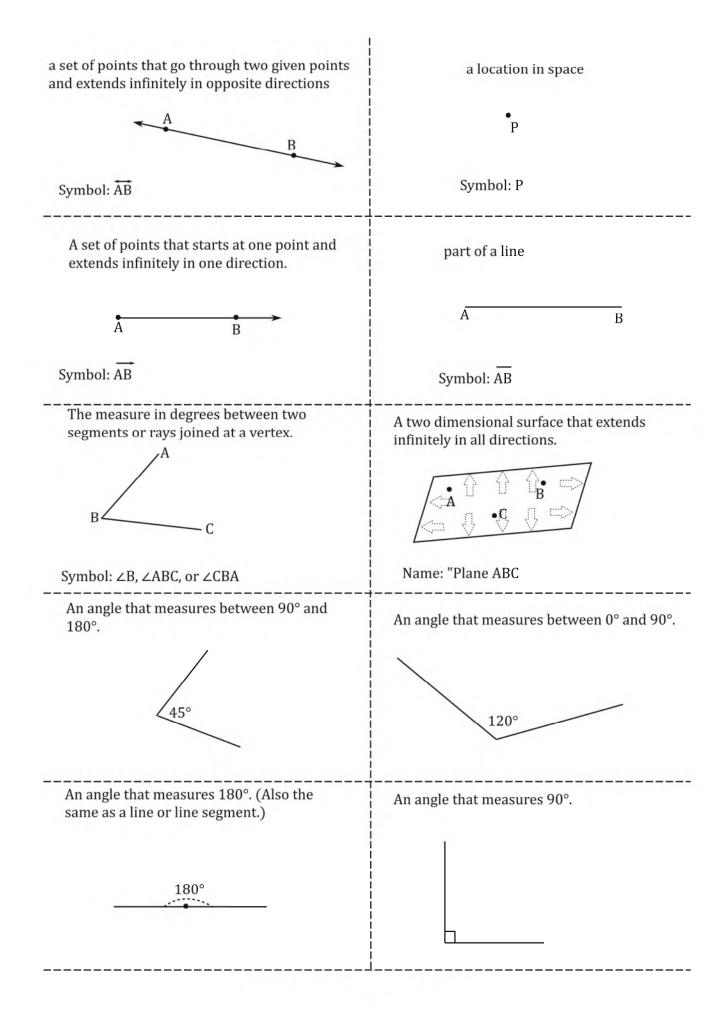
LOVE THESE FLASH CARDS?

Here is the Geometry Curriculum to use with them!

On My Teaching Library @ https://myteachinglibrary.com/product/high-school-geometry

Connect and follow My Teaching Library on...

FB Group (PRIVATE GROUP)

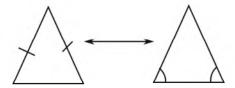

FB Page
Instagram
Pinterest
X (formally twitter)

YouTube

Follow My Teaching Library on TPT by clicking here!

Printing directions: Set printer to <u>double sided</u> - Flip on <u>long edge</u>

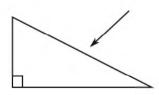
Point	Line
Line Segment	Ray
Plane	Angle
Acute Angle	Obtuse Angle
Right Angle	Straight Angle

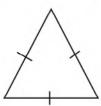


Vertex	Perpendicular
Parallel	Congruent
Bisect	Midpoint
Acute Triangle	Obtuse Triangle
Right Triangle	Scalene Triangle

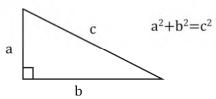
Two lines that intersect at right angles.	The point where two rays or segments meet to form an angle.
exactly the same size and shape	Two lines in a plane that never intersect.
A point that is exactly in the middle of a line segment and bisects the segment.	to cut exactly in half so that both sides are exactly the same
A triangle that contains one obtuse angle.	A triangle that contains three acute angles.
A triangle that has 3 different side lengths.	A triangle that contains one right angle.

Isosceles Triangle	Isosceles Triangle Theorem
Equilateral Triangle	Hypotenuse
Leg	Pythagorean Theorem
Pythagorean Triple	Scale Factor
Perimeter	Area

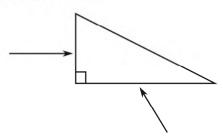

Iff a triangle is isosceles then its base angles are congruent.


A triangle that has two congruent sides.

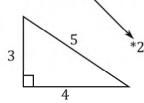
The side opposite the right angle in a right triangle. The longest side of a right triangle.

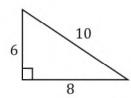


A triangle that has three congruent sides.



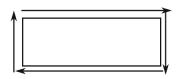
Also, all angles measure 60° ($180^{\circ}/3=60$).


The sum of the squares of the two legs of a right triangle is equal to the square of the hypotenuse.



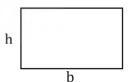
The two sides of right triangle that aren't the hypotenuse.

The factor by which a Pythagorean triple is multiplied to create a similar triangle.

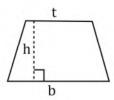

Any three whole numbers that make the Pythagorean theorem true.

3-4-5 5-12-13 7-24-25 8-15-17 ect...

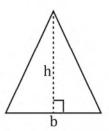
The number of square units that fit inside a two dimesional figure, measured in units squared. Ex. 6in²


The total distance around a two dimetional figure. The sum of the sides of a polygon.

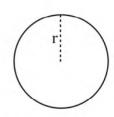
Area of a Rectangle	Area of a Parallelogram
Area of a Triangle	Area of a Trapezoid
Area of a Rhombus by its Diagonals	Area of a Circle
Area of a Square	Height
Prism	Pyramid


Area = base times height. A=bh

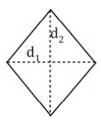
Area = base times height. A=bh


Area = base + top times height, divided by two.

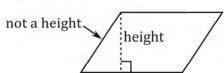
 $A = \frac{(b+t)h}{2}$



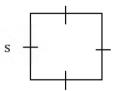
Area = base times height divided by two.



Area = pi times the radius squared. $A=\pi r^2$

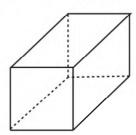

Area = the product of the diagonals divided by two.

$$a = \frac{d_1 * d_2}{2}$$

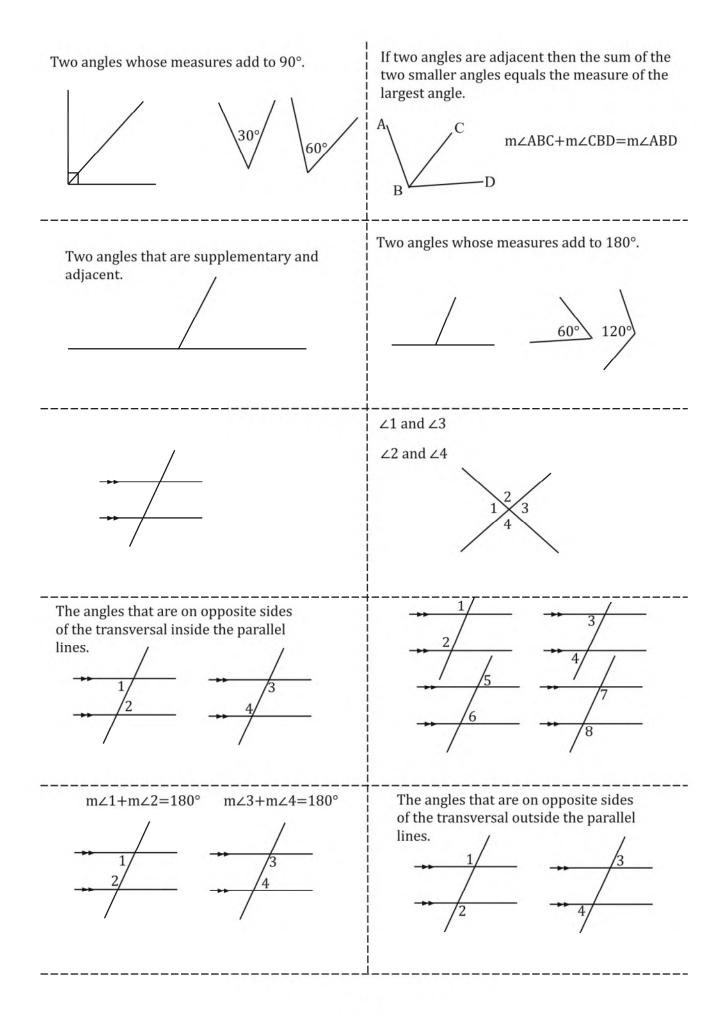


The distance that spans from the base of a

figure to its highest point, and is perpendicular to the base.


Area = side squared. $A=s^2$

A three dimensional figure, whose base is a polygon and extends upwards to a single point.


A three dimensional figure, made of polygons, whose base and top are congruent polygons.

Cylinder	Cone
Volume	Volume of a Prism
Volume of a Cylinder	Volume of a Pyramid
Volume of a Cone	Total Surface area
Lateral Surface area	Adjacent Angles

A three dimensional figure whose base and top A three dimensional figure, whose base is a are congruent circles. circle, and extends upwards to a single point. The space inside a three dimensional figure Volume= the area of the base times the height. measured in units cubed. V=BhEx. 6in³ Volume= pi times the radius squared times the height. Volume= the area of the base times the height $V = \pi r^2 h$ divided by three. $V = \frac{Bh}{3}$ V= pi times the radius squared times the height divided by three. The area of all the faces of a three dimensional figure added together. Two angles that share a common ray or segment and a common vertex. (next door neighbors) The area of all the faces of a three dimensional figure except the bottom and/or top.

Angle Addition Postulate	Complementary Angles
Supplementary Angles	Linear Pair
Vertical Angles	Parallel Lines cut by a Transversal
Corresponding Angles	Alternate Interior Angles
Alternate Exterior Angles	Consecutive Angles

Triangle Sum Theorem	Remote Exterior Angle Theorem
Triangle Inequality Theorem	Hinge Theorem
Triangle Congruence Properties/Theorems	Deductive Reasoning
Inductive Reasoning	Conditional Statement
Hypothesis	Conclusion

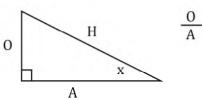
The sum of the measures of the interior angles of a triangle is equal to the measure of angles of any triangle is 180° the remote exterior angle. $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$ $m \angle 1 + m \angle 2 = m \angle 3$ The sum of two sides of any triangle is the maximum length of the third side, and the For a triangle to exist, two sides of the difference of the the two sides is the minimum triangle must always be greater than length of the third side. the third side.. s1+s2=s3maxs1+s2>s3s1-s2=s3 min Using facts, definitions, postulates and SSS Side, Side, Side theorems to reach a conclusion. SAS Side, Angle, Side ASA Angle, Side, Angle AAS Angle, Side, Angle Hypotenuse, Leg (for right triangles) HL a cause and effect relationship stated as... Making a general statement inferred from specific examples. If p Then q p⇒q (like finding the rule to a pattern) The part of a conditional statement that The part of a conditional statement that comes after "if." (the "cause") comes after "then." (the "effect") p q

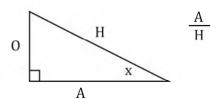
The sum of the measures of two interior

Law of Detachment	Law of Syllogism
Converse	Inverse
Contrapositive	Counter Example
Negation	Bi-Conditional Statement
Proof	Reflexive Property

For any two conditional statements $p\Rightarrow q$ and $p\Rightarrow r$ and they are both true, then $p\Rightarrow r$ is also true.	For any conditional statement p⇒q and this statement is true, if p is true then q is also true.
If not p then not q. ~p⇒~q	If q then p. q⇒p
A specific example that proves a statement false. It is true for p but shows q is false.	If not q then not p. ~q⇒~p
A conditional statement that is true, and its converse is also true. written: Iff p then q ("iff" is not a typo)	To make something the opposite using such words as "not," "no," "isn't," etc.
To say that something is equal to itself. Ex. 2=2 AB=AB etc.	A process of demonstrating some statement is true using facts, given information, and logical reasoning.

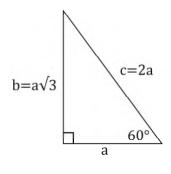
Two Column Proof	Substitution
Additive, Subtractive, Multiplicative, Division Properties of Equality	Sin x
Cos x	Tan x
Tangent Identity	Pythagorean Identity
45-45-90 Triangle	30-60-90 Triangle

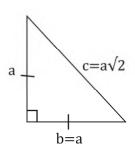

If AB=CD and CD=DE, then AB=DE. If x=2 and y=x, then y=2. 0 0 A

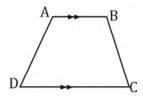

Statements	Reasons

Performing the same operation to both sides of an equation keeps the equation equal.

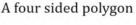
Ex.

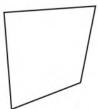

$$\begin{array}{ccc} & & AB+CD=EF \\ \underline{2x=4} & & -CD & -CD \\ \underline{2} & & AB=EF-CD \end{array}$$

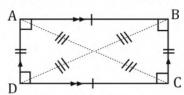



$$\sin^2 x + \cos^2 x = 1$$

$$tanx = \frac{sinx}{cosx}$$

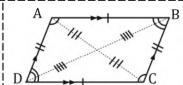


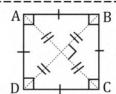

Quadrilateral	Trapezoid
Parallelogram	Rectangle
Rhombus	Square
Kite	Sum of the Interior Angles of Polygons
Sum of the Exterior Angles of Polygons	Regular



One pair of parallel sides AB||CD

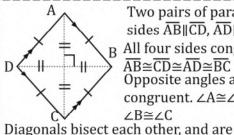
Two pairs of consecutive angles mD+mA=180° mB+C=180°




All angles are right angles.

Two pairs of parallel sides $\overline{AB} \parallel \overline{CD}$, $\overline{AD} \parallel \overline{BC}$ Two pairs of congruent sides $\overline{AB} \cong \overline{CD}$, $\overline{AD} \cong \overline{BC}$ Diagonals bisect each other and are congruent. sides AC≅BD

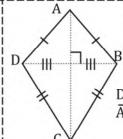
Opposite angles are congruent ∠A≅∠C, ∠B≅∠C.


Two pairs of parallel sides $\overline{AB} \parallel \overline{CD}$, $\overline{AD} \parallel \overline{BC}$ Two pairs of congruent sides $\overline{AB} \cong \overline{CD}$, $\overline{AD} \cong \overline{BC}$ Diagonals bisect each other. Four pairs of consecutive angles $m \angle D + m \angle A = 180^{\circ} m \angle A + m \angle B = 180^{\circ}$ $m \angle B + m \angle C = 180^{\circ} m \angle C + m \angle D = 180^{\circ}$

Two pairs of parallel sides AB||CD, AD||BC All four sides congruent. $\overline{AB} \cong \overline{BC} \cong \overline{CD} \cong \overline{DA}$ All angles are right angles.

Diagonals bisect each other, are congruent, and are perpendicular $\overline{AC} \cong \overline{BD}$, $\overline{AC} \perp \overline{\overline{BD}}$.

Diagonals bisect angles and create 45° angles. m∠DAC=45°, m∠CAB=45° ect...



Two pairs of parallel sides AB||CD, AD||BC B All four sides congruent. $\overline{AB} \cong \overline{CD} \cong \overline{AD} \cong \overline{BC}$ Opposite angles are congruent. ∠A≅∠C, ∠B≅∠C

perpendicular AC⊥BD Diagonals bisect opposite angles ∠DAC≅∠CAB ∠ABC≅∠DBCect...

(n-2)180°

where n=the number of sides

Consecutive sides are congruent. DA≅AB BC≅CD

Diagonals are perpendicular. $\overline{AC} \perp \overline{DB}$ and \overline{AC} bisects \overline{DB}

A Polygon that is equiangular (all angles are equal) and equilateral (all sides are equal).

always equals 360°

One Interior Angle of a Regular Polygon	One Exterior Angle of a Regular Polygon
Pentagon	Hexagon
Heptagon	Octagon
Nonagon	Decagon
Dodecagon	N-Gon

$\frac{(n-2)180^{\circ}}{n}$ where n=the number of sides	$\frac{360^{\circ}}{n}$ where n=the number of sides
a polygon with 6 sides	a polygon with 5 sides
a polygon with 8 sides	a polygon with 7 sides
a polygon with 10 sides	a polygon with 9 sides
a polygon with n sides	a polygon with 12 sides

Similar	Ratio of Similarity
Triangle Similarity Theorems/Properties	r:r²:r³
Translation	Rotation
Reflection	Dilation
Circle	Radius

The ratio of the lengths of the sides of two similar figures. Two shapes that are the same shape, but different sizes. The ratio of similarity is 2/3 for these triangles. SSS Side, Side, Side The ratio of the area of two figures is the SAS Side, Angle, Side similarity ratio squared. The ratio of the AA Angle, Angle volume of two figures is the similarity ratio AAA Angle, Angle, Angle cubed. Each S is an equal ratio of two sides. A transformation in which the figure is turned A transformation in which the figure is turned without changing its orientation or size. about (around) a point. A transformation in which the figure is A transformation in which the figure is enlarged transformed into its mirror image. but maintains its shape. A segment that extends from a circle's center to The set of points equidistant from a given point. its circumference.

Diameter	Chord
Circumference	Arc
Major Arc	Minor Arc
Central Angle	Inscribed Angle
Tangent Line	Point of Tangency

A segment that has its endpoints on the A chord that passes through the center of the circumference of a circle. circle. A part of the circumference of a circle. The distance around a circle (the perimeter of a circle). The long arc around the circumference of a The short arc around the circumference of a circle between two points on the circumference. circle between two points on the circumference. В An angle that has its vertex on the center of a An angle that has its vertex on the circle and extends to its circumference. circumference of a circle and extends across the circle. Its measure equals the measure of the included Its measure is half the measure of the included arc. arc. The point where a tangent line intercepts a A line on the exterior of the circle that circle. intercepts the circle in only one point.

Intersecting Chord Theorem	Intersecting Tangents Theorem
Diameter/Chord Theorem	Tangent/Radius Theorem
Sector	Semi Circle
Midpoint Formula	Distance Formula

If two tangents intersect their lengths from the If two chords intersect inside a circle the point of intersection to their points of tangency products of the pieces of the two segments are are equal. equal. (AE)(EC)=(BE)(ED)AB = ACIff a diameter is perpendicular to a chord then Iff a tangent line and a radius intersect at the point of tangency then they are perpendicular. the diameter bisects the chord. A portion of the area of a circle enclosed by two radii and the included arc. half of a circle $D = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$