

All the vertices of the figures fit right next to each other around a point. The sums of the angles around any one point equal 360 degrees.

A semiregular tessellation uses congruent regular polygons of more than one kind. There are eight semiregular tessellations, two of which use mirror images of each other.

triangle and squares

octagons and squares
examples
Variations of these regular polygons can also tessellate. If you change one side and then change the opposite side to match in the same way, the shape will tessellate.

Example: Change a square to make a new tessellation.

- start with a square
- change one side
- copy the change to the opposite side

Other shapes can be used in tessellations. The Dutch artist Maurits Cornelis Escher (1898-1972) became famous for the unusual shapes he used in tessellations.

There are some shapes that do not tessellate.
Example: congruent regular pentagons

Practice
Answer the following.

Equilateral triangles will tessellate a plane. All their vertices fit right next to each other around a point. Each angle measures 60 degrees, and 60 is a factor of 360. (It divides 360 evenly.) It takes six equilateral triangles to surround a point, and $60 \times 6=360$.

equilateral triangles

1. Name the other two regular polygons that will tile or tessellate the plane. Tell how many of the polygons will be required to surround a point.
a. \qquad will tile a plane because
\qquad is a factor of 360 . It will take
\qquad of these \qquad
to surround a point.
b. \qquad will tile a plane because
\qquad is a factor of 360 . It will take
\qquad of these \qquad
to surround a point.
2. For each of the patterns for tessellations provided, indicate the measure of each of the angles and find the sum of the angles to verify that it is 360 degrees each time.
a. $\quad a=$ \qquad ; $b=$ \qquad ; $c=$ \qquad ; $d=$ \qquad
\qquad $+$ \qquad $+$ \qquad $+$ \qquad
\qquad

b. $a=$ \qquad ; $b=$ \qquad ; $c=$ \qquad $; d=$ \qquad ;
\qquad
\qquad $+$ \qquad $+$ \qquad $+$ \qquad

$$
+
$$

\qquad
\qquad

Practice

Draw a square on a piece of paper. From one edge of the square, cut an interesting design (see example below). Tape the design that was cut to the opposite edge of the square. Your new figure should tessellate the plane. Do the same with a parallelogram.

Coordinate Grid or System

A coordinate grid or system is a two-dimensional system used to locate points in a plane. A coordinate grid or system has a horizontal ($\leftrightarrows)$ number line (x-axis) and a vertical (\ddagger) number line (y-axis). These two number lines or axes of a graph intersect or meet at the origin. The coordinates at the intersection of the origin are $(0,0$.) The axes form four regions or quadrants. However, the origin and the axes are not in any quadrant.

To locate ordered pairs or coordinates such as $(5,4)$ on a coordinate system, do the following.

- start at the origin $(0,0)$ of the grid
- locate the first number of the ordered pair or the x-coordinate on the x-axis (\hookleftarrow)
- then move parallel $(\|)$ to the y-axis and locate the second number of the ordered pair or the y-coordinate on the y-axis (\mathbb{I}) and draw a point

Practice
Use the list below to write the correct term for each definition on the line provided
\qquadaxes (of a graph) number line ordered pair coordinates intersection x-axis quadrant x-coordinate y-axis y-coordinate

\qquad 1. the first number of an ordered pair
2. the second number of an ordered pair
3. any of four regions formed by the axes in a rectangular coordinate system
4. the point at which two lines meet
5. numbers that correspond to points on a graph in the form (x, y)
6. the intersection of the x-axis and y-axis in a coordinate plane, described by the ordered pair $(0,0)$
7. the horizontal and vertical number lines used in a rectangular graph or coordinate grid system as a fixed reference for determining the position of a point
8. the vertical (\ddagger) axis on a coordinate plane
9. the horizontal ($\longleftrightarrow)$ axis on a coordinate plane
10. a line on which numbers can be written or visualized
11. the location of a single point on a rectangular coordinate system where the digits represent the position relative to the x-axis and y-axis
Example: (x, y) or $(3,4)$
12. network of evenly spaced, parallel horizontal and vertical lines especially designed for locating points, displaying data, or drawing maps

